
Diode-resistor percolation in two and three dimensions. I. Upper bounds on critical probability

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1982 J. Phys. A: Math. Gen. 15 1849

(http://iopscience.iop.org/0305-4470/15/6/025)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 16:57

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/15/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 15 (1982) 1849-1858. Printed in Great Britain 

Diode-resistor percolation in two and three dimensions: I. 
Upper bounds on critical probability 

Deepak Dhar 
Theoretical Physics Group, Tata Institute of Fundamental Research, Homi Bhabha Road, 
Bombay 400005, India 

Received 20 November 1981 

Abstract. We obtain upper bounds to the critical probability for percolation in a random 
network made of oriented diodes and resistors. It is shown that for the square lattice 
p,<0.3700 and for the simple cubic lattice p,<0.2417. 

1. Introduction and outline 

Although the directed percolation problem was formulated by Broadbent and Ham- 
mersley along with undirected percolation in their classic paper in 1957, it has not 
been studied very much until recently. Besides their obvious relevance to many 
physical situations (fluid flow through porous media under gravity, hopping conduction 
in strong electric fields, spread of forest fires in the presence of wind, etc; see Obukhov 
(1980) and Van Lien and Shklovskii (1981)), directed percolation problems are 
interesting because they show many qualitatively new features usually not evident in 
undirected percolation. The percolation problem of the determination of the proper- 
ties of a random network of diodes and insulators was studied by Blease (1977a, b, c), 
who obtained estimates for the critical percolation probabilities and critical exponents 
for a large number of lattices from series expansions, and showed that the problem 
lies in a different universality class from undirected percolation. Obukhov (1980) 
showed that the upper critical dimension for directed percolation is 5 ,  and studied 
the structure of the infinite cluster in 5 - E dimensions. Cardy and Sugar (1980) have 
shown that the directed percolation problem is equivalent to Reggeon field theory, 
which models the behaviour of scattering cross sections of elementary particles at 
high energies. 

The problem has been studied using Monte Carlo simulations (Kertesz and Vicsek 
1980. Dhar and Barma 1981) and renormalisation group techniques (Kinzel and 
Yeomans 1981, Phani and Dhar 1982), and its critical exponents determined. Domany 
and Kinzel (1981) have studied this problem on a square lattice in the case of unequal 
horizontal and vertical bond probabilities, and noticed that the problem can be solved 
exactly in the case when one of these two bond probabilities is exactly 1. 

More recently, problems with a random mixture of no-way, one-way and two-way 
bonds have been studied. In electrical terminology these may be called diode-resistor- 
insulator percolation problems. Reynolds (1981) and Redner (1982, Redner and 
Brown 1981) allow the diode orientations to be arbitrary, while Dhar et af (1981) 
have considered mainly the case when all diodes are oriented in the direction of the 
positive axes. 
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In this paper we study the diode-resistor percolation problem in two and three 
dimensions. The problem is defined by the requirement that each of the bonds of the 
lattice can be one-way conducting or two-way conducting, with probabilities q and p 
respectively, independently of other bonds ( p  + q = 1). The orientation of diodes is 
pre-assigned to be in the direction of increasing x, y or z coordinates and is not a 
random variable. 

If the concentration of resistors p is less than a critical value pc ,  a point source of 
fluid cannot wet all points of the lattice. The wetted region, far away from the source, 
is confined to a convex region with less than half of the sites of the plane wet. As p 
is increased above pc,  there is an instability and the entire plane is wetted with 
probability 1. The fractional number of wetted sites jumps discontinuously from 1 to 
1 as p is increased above pc.  

The diode-resistor percolation is the simplest non-trivial model for studying the 
directional effects in percolation problems. In two dimensions it is dual to the 
diode-insulator percolation problem, and this property can be used to advantage as 
some physical quantities are easier to study in the diode-resistor problem than in the 
dual diode-insulator percolation. In an earlier paper we used this property to deter- 
mine the variation of the wedge angle in two dimensions using Monte Carlo simulations 
(Dhar er a1 1981). 

The organisation of this paper is as follows. In 8 2 we describe a technique to 
determine upper bounds to the critical probability p c  on a square lattice. The conver- 
gence of our technique is considerably better than earlier techniques, and its asymptotic 
convergence is discussed briefly. In § 3 we apply the same technique to determine 
upper bounds to the critical probability for a simple cubic lattice. Some algebraic 
details of the derivation of third-order bounds to the critical probability for the square 
lattice are given in an Appendix. 

2. Upper bounds to the critical probability in diode-resistor percolation on a 
square lattice 

In this section we describe a technique to derive a monotonically decreasing sequence 
of rigorous upper bounds to the critical probability in the diode-resistor percolation 
problem by systematically taking into account more and more backflow paths. We 
also use the technique to obtain a series expansion for the tangent of the half-wedge 
angle B ( p )  in powers of p .  

The technique may be summarised as follows. Starting at the origin, we determine 
a sequence of points Pi, i = 0 .  . . m ,  such that the x ordinate of Pi is -i and a source 
at Pi would wet Pi+l. The exact choice of Pi+*, given Pi, depends on the configuration 
of bonds in the neighbourhood of Pi. The sequence {Pi} is defined so that the ordinates 
define a Markov stochastic process (with finite memory). We use this Markovian 
property to determine the average direction in which the points Pi lie with respect to 
the origin. By construction, a source at the origin wets all the points P,. The average 
direction of Pi thus defined gives us a lower bound to the wedge angle in the 
diode-resistor percolation. The bounds on the critical probability follow from the 
requirement that, for probabilities less than the critical probability, the wedge angle 
be less than IT. 

As an example of the wetting strategies (decision rules determining Pi+l ,  given 
Pi), we describe below a strategy, to be called the k strategy, in which in determining 
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from P, we consider only backflow paths involving not more than k adjacent 
columns of vertical bonds to the right of and including the column x = - i  - 1 and the 
intervening horizontal bonds. 

Let V,  be the set of vertical bonds in the column x = -i, and let H, be the set of 
horizontal bonds between the columns x = -i and x = -i - 1. We define Po to be the 
lowest point (0, y o )  in the column x = 0 which may be wetted by a source at the origin 
using bonds lying in Vo U H-l U V-l only. (Here U denotes set-theoretical union.) 
Let the coordinates of the point P, be (-i, y l )  (figure 1). Let (-i - 1, y ,  + rI+J be the 
coordinate of the lowest wetted point P: in the column x = -i - 1 if the source is at 
PI, and using wetting paths lying in V,  U H,. Let y I  + rltl - s , + ~  be the ordinate of the 
lowest wetted point P: in the column x = - i  - 1 if the source is at Pi and wetting 
paths lie completely in - 

tltl), the lowest point in its column wetted from a source at P:' using wetting paths 
in Vl+l U H ,  U V,. Finally, we determine the point P,+l = (-i - 1, y, +rl+l - s ~ + ~  - rri l  - 
u,+l) which is defined as the lowest wetted point in the column x = -i - 1 if the source 
is at P:", and wetting occurs only through bonds in V,+I U H, U VI U H,-1 U 

We then determine the point P:" = (-i - 1, y, + rr+l 

9' 

Figure 1. The strategy k = 3. The single and double lines denote 
one-way and two-way bonds respectively. The positions of the 
points P:, Py, P:" and Pi+l are shown for a specific configuration 
of diodes and resistors. 

The above prescription determines the points {PI}  recursively, and defines the 
wetting strategy for k = 3. The strategies for other values of k are defined similarly. 
In the k = 0, 1, 2 strategies the point PlCl is identified with the points Pi, P:' and P:" 
respectively. In general, in the strategy k, P,+l is defined as the lowest wetted point 
in the column x = -i - 1 if the source is at P,, and wetting occurs using bonds lying 
inH,  or V, ( i + l ? i > i + l - k ,  i > j > i + l - k ) .  

The break-up of y I + l  - y I  into four variables s,+l, t l+l and U,+I  is motivated 
by the observation that s , + ~ ,  tltl  and u , + ~  may be called the wettings due to first-, 
second- and third-order backflows respectively. (In general, Y , + ~  - y, is broken into 
k + l  terms including up to the kth-order backflow term.) The distribution of the 
kth-order backflow variable depends only on earlier (lower i) variables of lower order, 
and we can determine these distributions successively. 

Coming back to the special case k = 3, we note that the determination of rLt l ,  s , + ~ ,  
rlil and only requires a knowledge of the bond configurations in H,, VI, 
H,-I and Vc-l. Thus the sequence {r,, s,, r,, U,} treated as a vector stochastic process 
is a Markov process with finite memory. A little reflection shows that this process is 
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actually a simple Markov process, and the probability distribution of ( r , + l ,  t,+l, 
u , + ~ )  depends only on (r,, sl, t,, U , )  and not on earlier values of r, s, t or U .  Symbolically 
we write 

Pr({r,, s,, t,, U,)) = P r h ,  so, to ,  uO) n Pr(rl, s,, t,, ullrl-l, ~ ~ - 1 ,  t l - l ,  u I -d  
I 

where Pr(E) denotes the probability of an event E, and Pr(E1F) denotes the conditional 
probability of the event E,  given F. 

In the Appendix we have described the transition matrix of this process in some 
detail and calculated the mean values of r,, s,, t, and U,. These values are independent 
of i. The expectation value of y, is clearly given by 

( Y , )  = ( ~ ~ ) + j ( ( r ) - ( s ) - ( t ) - ( u ) ) .  (1) 
The average direction of motion 4, using this strategy of wetting with respect to the 
direction x = y > 0, is given by 

cot(4 -.rr/4) = ( r ) - ( s ) - - ( f ) - - ( u ) .  (2) 
Numerical evaluation of the right-hand side of equation (2) using the explicit functional 
form derived in the Appendix shows that it is less than 1 if p > 0.3702. Since for all 
p < p c  the wetted cluster is confined to a wedge of half-wedge angle less than r / 2 ,  
this implies that 

p,(square lattice) < 0.3702. (3) 
The corresponding bounds for the k = 0, 1, 2 strategies are 0.5, 0.3820 and 0.3739 
respectively. These bounds can of course be improved by calculating higher-order 
backflow terms. The contribution of kth-order backflows is easily seen to be of order 
p 2 k .  For example, if {U,} denote the fourth-order backflow terms in a k > 4  strategy, 
it can be shown that 

( v l ~ = P s + o ( P 9 ) .  (4) 

~ o t [ e ( p ) - ~ / 4 ]  = ( T ) - ( S ) - ( ~ ) - ( U ) - P ' - O ( ~ ~ ) .  (5) 

Using the above equation we can write a series expansion for the half-wedge angle 6 ( p ) :  

Using the expressions for (r), (s), ( t )  and ( U )  given in the Appendix, this equation 
may be re-expressed as 

tan[e(p) - 4 4 1  = p + p 2  + 2 p 3  +4p4 

+ 8ps + 17p6 + 38p' + 8 5 p 8  + 1 93p9 + 450p lo + O( p "). (6) 
The upper bounds on the critical probability of the diode-resistor percolation 

(pPRP) on a square lattice can be translated into lower bounds on the critical 
probability for the diode-insulator percolation (pf") on a square lattice as these two 
are related to each other by the duality relation (Dhar et a1 1981) 

1. (7) p c  DIP + p f R P =  

Equation (3) then implies that 

pfIP > 0.6298. 
It is interesting to compare our lower bounds on p?IP thus derived with earlier 

known lower bounds. Mauldon (1961) obtained a monotonic increasing sequence of 
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bounds to pfIP by considering Markov processes simpler than the diode-insulator 
percolation, and converging to it. His first lower bound was p?IP >0.5858, and his 
best bound (eight terms in his sequence) was 0.6199. Blease (1977b) used the result 
(due to Hammersley) that for p >p?IP the expected number of sites wetted by a point 
source and at a distance n from it must be greater than 1. For n = 27 his result was 
p?IP > 0.5895, while for n = 15 he obtained p:Ip > 0.5758. These results should be 
compared with the true value of p c  estimated by extrapolations of series expansions 
p?IP = 0.6446 f 0.0002. Clearly the convergence of these bounds to the true value is 
very slow. 

Recently Gray et a1 (1980) have shown that p?IP >0.6231 by considering bounds 
on the average inclinations of ‘ceilings’ and ‘floors’ (these are defined as boundaries 
outside which no sites are wet), a method which is quite similar in spirit to ours. We 
note, however, that our k = 3 lower bound (0.6298) is somewhat better than their 
value (0.6231) using one-step ceilings. 

These bounds can be improved by taking into account backflows of higher and 
higher order. In the limiting case k -* 00, clearly we get the correct critical probability. 
However, the small improvement in the k = 3 bound over the k = 2 value suggests 
that the convergence of these bounds to a true critical value is algebraic and not 
exponential. For example, assuming the two-point correlation function G(R)  below 
ppIP varies as G(R)-R“-””exp(-e”R) (Cardy and Sugar 1980), it is easy to see 
that the difference between p?lP and the bound calculated using the method of Blease 
and determining the correlations up to a distance n varies as [(log n)/n]””. On the 
other hand, this difference is O ( l / n )  if we determine a bound pc,, on pfIP by requiring 
that the sum of the first n terms on the right-hand of equation (6) be 1. (We assume 
that coefficients in the expansion vary as pi”n-’-b for large n.) Since a calculation 
of kth-order backflows is somewhat better than determining the first 2k + 4  terms in 
the Taylor expansion of tan[ 8 ( p )  - .rr/4], the convergence of these bounds is at least 
O( l / n ) .  The value of v is about 1.73 and 1.27 in two and three dimensions respectively, 
and the calculation of correlations up to a distance n requires steps of order exp(n’) 
and exp( n 3, respectively; the gain in convergence is substantial using our technique. 
The slow convergence of rigorous bounds to critical parameters is also encountered 
in other problems, and reflects the divergence of the correlation length near criticality. 

The exact calculation of higher-order backflows is quite difficult. An easier 
approach (though less systematic) is to obtain lower-bound estimates of their contribu- 
tions valid for all k. For example, the simple observation that the contribution of the 
kth-order backflow term to tan[6(p) - .rr/4] is not less than p Z k  (1 -~q)’-’~ for k > 1 
may be used to obtain a slightly stronger result ppRP < 0.3700. Estimates which are 
sharper than above can be obtained with some effort, but will not be discussed here. 

3. Upper bounds to the critical probability for diode-resistor percolation on the 
cubic lattice 

Upper bounds to the critical probability for the diode-resistor percolation on the 
simple cubic lattice are derived similarly. To avoid tedious algebra, we illustrate the 
technique using the simplest k = 1 wetting strategy in which no x or y bond is ever 
traversed in the positive direction (we assume that all diodes are oriented in the 
direction of increasing x ,  y or z coordinates). The wetting strategy is defined as follows. 

(i) Start at the origin. Choose i = 0. 
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(ii) Move in the positive z direction until the first allowed step in the negative x 
or negative y directions is encountered. Let the number of steps taken be ri. 

(iii) (a) If only one of the negative x or negative y steps is allowed, take that step, 
and then move in the negative z direction until the first one-way z bond is encountered. 
Let the number of z steps taken be si. 
(b) If both negative x and negative y steps are allowed, choose the one corresponding 
to the larger value of si. 

(iv) Increase i by 1, and go back to (ii). 
It is easy to see that, using this strategy, no bond is ever tested twice. The variables 

(9) 

{ri, s i }  are mutually independent random variables with distributions given by 

Pr(ri = r )  = q2'(1 -q2)  

The mean values of ri and si are given by 

Numerical evaluation shows that ( r i ) - ( s i )  is less than 1 if p >0.2417. But this would 
imply that the average direction of motion using this strategy makes an obtuse angle 
with the direction x = y = z >O. But such a situation is clearly unstable, and implies 
that all sites of the lattice are wetted by a point source. We conclude that 

pYRP(simple cubic) < 0.2417. (13) 
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Appendix 

In this Appendix we calculate the mean values ( r i ) ,  (si), (ti) and (ui)  in the k = 3 backflow 
strategy. The arguments are not very straightforward, involving several steps. We 
outline them below in sufficient detail to enable the reader to reconstruct them without 
undue effort. 

We note that the transition matrix of the random (vector) sequence {ri ,  si, ti, ui}  can 
be factorised in the form 

This may be seen as follows. ri is the number of vertical bonds that must be traversed 
upwards from pi  before the first allowed leftward step is encountered. This depends 
only on the bond configuration in Hi. Similarly, si depends only on the bond configur- 
ation in V,. From the mutual independence of occupation probabilities for different 
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bonds, it follows that { T i }  and {si} are mutually independent random variables. The 
probability distributions of { T i }  and {si} are geometrical distributions given by 

Pr(ri = r )  = p q r ,  r = O ,  1 ,2 , .  . . (A21 

Pr(si = s) = qp', s = 0,1 ,2 , . .  * . (A3) 

Mean values of ri and si are easily calculated from these distributions and are given by 

( T i )  = q l p  ('44) 

(si) = P I q .  (A5) 

The probability distribution of ti depends on ri and si because it depends on bonds 
in Hi, vi and vip1, and some information about these bonds is contained in ri and si. 
For example, direct downward wetting from the points Pi-1  or ( - 4  y i - l  + ri -si) is not 
allowed. Also, there is no direct leftward wetting from ( - i  + 1, yi-l + A) for 0 C A S  
ri - 1. If ri 2 si, we must have ti = 0 as no wetting paths giving ti # 0 exist consistent 
with the above information. On the other hand, if ri < si, additional wetting may occur 
with finite probability as wetting paths first going right to the column x = - i  + 1, then 
down and then left to x = -i may exist. 

If ri <s i ,  the conditional probability distribution of ti is independent of the precise 
values of ri and si, as the wetting paths involve bonds only to the right of and below 
Py-l. The only information about these bonds is that the bond directly below Pi-1  is 
a diode. No other bonds would have been tested earlier according to our strategy. 
Let the conditional probability that ti = t given that ri <s i  be f t ,  or more formally 

if ri 5 si 
if ri < si. Pr(ti = tlri, si) = 

That ui depends on ri, si, ti, r ip l  and si-l but not on t i-1 and ui-l is based on a similar 
observation. Given ri <s i ,  the wetting paths contributing to non-zero ti may be 
enumerated as follows. Py-l automatically wets the site (-i + 1, yi-l + ri - s i ) .  Let us 
say that the highest two-way flow allowing bonds in Hi having ordinate below yi-l + ri - 
si is at yi-l + ri -s i  - a. Here a 2 1. The probability distribution of a is geometrical 

Pr(a) = p q a P 1 .  (A71 
In order that ti # 0, the vertical bonds between ( - i  + 1, yi-l + ri - s i )  and ( - i  + 1, 
yi-l + ri - si - a )  must all be resistors. The probability of this event is p a .  Let (-i ,  y i  + ri + 
si - a  - b )  be the lowest wetted point in the column x = -i using only bonds in Vi if 
the source is at ( - i ,  y i  + ri - s i  - a ) .  Clearly, b takes values from 0 to co with probabilities 
q p  '. Now let ( - i ,  y i  + ri - si - a - b - c) be the lowest wetted point in the column x = - i  
using bonds in Hwi, Vpi and V-i+l and the source at ( - iy  y i  + ri -si - a  - b).  The same 
point would be wetted if the source were at ( - i ,  y i  + ri - s i ) .  Hence we have ti = a + b + c .  
The conditional probability distribution of c is clearly the same as that of t. We thus 
have 

w w w  

f t =  1 1 1 pqq-lpaqpbfc&,a+b+c for t > 0. 
a = l  b = O  c=O 

This equation can be solved by the method of generating functions. Define 
m 

F ( x ) =  1 f t X ' .  
r=o 
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It is easily seen that the solution of equation (A8) is 

F(X) = q(1 -pqx)(l -px)(l -pq) - l (~  - x p  - x p q  + x 2 p 2 q  -xp2q)-'. (A 10) 

From equations (A6), (A9) and (A10) it follows immediately that 

P4(1 - P 2 4 )  
( t i )  = ~ - 

We now determine (ui). As noted earlier, the conditional probability distribution of 
ui depends only on ri, si, ti, ri-l  and si-1.  We write 

( u i )  = C ui Pr(ri, si, ti, r i - l ,  si-1) (A12) 

where the summation extends over all possible values of ri, si, ti, ui, ri-l and si-l. If 
ri 3 si, the argument used previously implies that ui must be zero. Thus the summation 
in equation (A12) may be restricted to ri <s i .  

Two cases arise. If ri-l < s i - l ,  then the point PY!l automatically wets the point 
(-i + 2, yi-l + ri - s i  - t i ) .  In this case, the conditional distribution of ui (given ri, si, ti, 
ri-l < si-l) is independent of the precise values of si-l and ri-l. The probability that 
r i - l < s i - l  is p2/(1-pq). Let the conditional expectation value of ui in this case be 
T1. Then we have 

( U i )  = - p 2  Tl+T2 
1 -P4 

(A131 

where 

Tl = ui Pr(ri, s,, :i, uilri-l < si-l) (A141 

T 2 = C  uiPr(ri, si, ti, ui, ri-l,si-l). ('415) 

and 

In equation (A14) the sum extends over all values of ri < s i ,  ti and ui. In equation 
(A15) the sum extends over all values of variables satisfying si-l  s ri-l and ri <si. 

We first calculate Tl. The corresponding configuration is shown in figure A l .  We 
define points A, B and C to be the points immediately to the right of the points PyLl, 
PiPl and A respectively. Using the strategy described in the text we ensure that: 

(i) the bond directly below Pi-l is a diode; 

C 
Figure Al .  The calculation of Tl. The points Pt-l, 

and resistors. 

Py-l ,  
A, B and C are shown for a typical configuration of diodes 

PC; 
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(ii) there is no wetting path from A to points below PY-l using bonds in HI and 
V,-l alone; 

(iii) there is no wetting path from B to points below PiVl using bonds in Hi-1 and 
V;:-2 alone. 

The a posteriori probabilities of bonds are modified subject to these constraints. 
For example, there is no uncertainty in the status of the bond below P t M 1 .  If a direct 
wetting path exists from B to C, then ui must be zero in accordance with (ii) and (iii). 
The a posteriori probability of this event is easily shown to be (pq)‘ifSi-rr. Let g, be 
the conditional probability that ui = u given the conditions (i) and (ii) only. Then we 
get 

which simplifies to 

- - T F ( P d ) .  P4 
1 - P  4 

T2 is evaluated similarly. In this case, the bond directly below Pi-2 is known to be a 
diode. ui is non-zero only if ri < si and si + ti - ri > ri-l - si-l. Once the conditions are 
met, the conditional probability that ui = u is g,. Writing down P(ri, si, ti, ui, ri-1, si-l) 
explicitly and summing over all the variables, subject to the constraint mentioned 
above, we get 

We now determine the probabilities g,. Let the number of consecutive resistors in 
V,-l below the point A be a. Then it can be shown that the probability distribution 
of a subject to the constraint (ii) is given by 

Pr(a) = (1 -pq)p“q“. (A191 

Let the point ( - i  + 1, yi-l + ri -si  - t i  - a )  be denoted by A’= ( - i  + 1, a’). By construc- 
tion, the vertical bond below A’ is a diode. If a source at A’ gives the ordinate of the 
lowest wetted point in the column x = -i  equal to a’-  b for some b > 1 (let us denote 
the corresponding conditional probability by h b ) ,  then clearly ui = a + b. Otherwise 
(if b is zero) ui+l is zero. Thus we have 

m f Ug,=(-@-)(l-ho)+ b = l  bhb. 
U =o 1 -P4 

The problem of determining the g, has thus been converted to a simpler problem of 
determining the h b  with the simpler constraint that bonds directly below and to the 
left of A’ are diodes. Let the lowest point wetted by a source at A’ in the column 
x = - i + l  byusingbondsinHi-1, v-1 and K-2beA”=(- i+ l ,  a ’ - f ) .  Theprobability 
distribution of this variable t is clearly ft. The probability that no site below Pi-l  is 
wetted is q’, the probability that none of the t bonds in Hi with ordinates lying between 
A’ and A’’ is a resistor. Summing over t, we get 



1858 D Dhar  

If a ’ - t  + r  is the ordinate of the lowest bond in Hi which allows a leftward flow 
( O < r < t - l ) ,  then the point (-i, a ’ - t + r )  is wet. We can then wet a lower point 
(-i, a’-  t + r -s )  using first-order backflows in Vi, and then a lower point ( - i ,  a’- t + 
r - s - t ’ )  using second-order backflow paths in Vi, K-l and Hi, and finally, a still 
lower point Pi = (-i, a’- t + r - s - t’ - U’) using third-order backflow paths in Vi, Hi, 
Vi-1, Hi-l and v-2. Obviously, the distribution of these variables s, t‘ and U‘ is the 
same as that of sir ti and ui, given a fixed value ri = r and ri-l < s i - l .  We thus get 

W 

1 bhb = 1 ( t  - r + s  + t ’ +  u’)f,qrppsq Pr(t’, u’(t, r, s) 
b = l  

(A221 

where the summation on the right-hand side extends over f varying from 1 to a, r 
varying from 0 to t - 1 ,  and all values of s, t’ and U‘. Substituting an explicit expression 
for Pr(t’, U‘, t, r, s ) ,  we get 

This equation, together with earlier equations, self-consistently determines TI, and 
hence (ui). The explicit algebraic expression for (ui> is somewhat complicated and is 
omitted here. 
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